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US ATLAS Pixel Electronics

Issues to address:
•Overview of the ATLAS pixel electronics problem and ATLAS

•Development process and institutional roles

•Schedule and Milestones

•Where are we ? A quick status report

•Basis of Estimate and Cost

•Summary
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Basic Electronics Requirements
Geometry:

•Pixel size to be 50µ by 300-400µ, peripheral logic to be ≈ 20

Overall Efficiency:
•Better than 95%, including deadtime, timewalk, dead channe

overlaps. Individual contributions no more than about 1% ea

Timewalk:
•Less than ≈ 20 ns for “interesting” charges, Q > QMIP/(3-5), w

approaches 6 Ke after 1015 fluences

Input Threshold:
•Require ≈ 2 Ke with tolerable occupancy, and 2-4 Ke “in-time

threshold dispersion less than ≈ 200e

Noise  and Noise Occupancy:
•Less than 200e noise, and less than 10-5 hits per crossing p
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Power Consumption
•Less than 40 µW/pixel front-end, and 250 mW/Front-end chi

Leakage Current Compensation
•Capable of sinking at least 50 nA without major operating po

Individual Pixel Calibration and Masking
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ATLAS Baseline Configuration
Chip Functionality for Baseline Modules:

•Front-end chips will contain 24 columns of 160 pixels, plus 2

logic, leading to a die size of 7.4 mm by 10.2 mm (≈ 75 mm2

yields). Only sparsified data associated with L1 triggers is tr

•MCC chips will service up to 16 FE chips in a star topology, u
links

•Block diagram for demonstrator 
module electronics, showing basic 
interconnections between FE and 
MCC chips. Final interconnections 
and pinouts may be simpler.

FE#0

FE#1

FE#15

MODULE
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Organization of Electronics Developme
Three major eras in design period:

•Parallel prototyping phase (“proof-of-principle”)

•Module “demonstrator” phase (realistic ATLAS prototypes)

•Pre-production phase

Now only two relevant rad-hard foundries. Pu
•DMILL (0.8µ 2-metal BiCMOS), and Honeywell (0.8µ, 3-met

CMOS)

Prototyping phase:
•Three major lines of development (CERN/Genova, Bonn/CP

•Follow initial concepts with goal of LHC “proof-of-principle”. G
what works and what doesn’t

Demonstrator phase:
•Begin with ingredients and experience from prototyping phas

•Coordinate design activity to produce realistic prototypes to 
operation of an ATLAS-like module (16 Front-end chips and
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•Carry designs through for both rad-hard vendors, and test pr
leading to a vendor and final design choice

Demonstrator Activities:
•Specify chips to be built (FE-A is “DMILL” Front-end, FE-B is

end, MCC is module controller chip)

•Build rad-soft ATLAS1 chips, 18 columns of 160 50µ x 400µ 
functional blocks in an enlarged 3 mm periphery, including d
I/O protocols. Geometry suitable for module construction (3 
row of pads on bottom).

•Build prototype ATLAS modules (16 FE chips, one MCC, rea
evaluate performance in detail.

•Build rad-hard ATLAS1 chips using two vendors. Evaluate co
and post- irradiation.

•Build second-generation rad-hard ATLAS2 chips, 24 column
pixels, with complete peripheral logic in 2 mm space.

Pre-production phase:
•Make final changes in design, establish estimate of yield for 
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What are Design Roles of Different Ins
Bonn (no engineers, one physicist/designer, ≈

•Plays significant role in characterizing all chips

•Leading system design and peripheral logic implementation 

CERN (two engineers, fraction of an FTE):
•Engineers participate in design discussions, but no formal ro

CPPM (two engineers, 2 FTE):
•Major role in “DMILL” FE chip, including front-end and reado

Genova (one physicist/designer, two engineer
•Major role in overall system design, and lead role in MCC ch

NIKHEF (one engineer, ≈ 0.5 FTE)
•Minor role in FE chips (I/O drivers), supporting role in MCC c
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What are US Roles in the FE Chip De
Building “Honeywell” FE Chip
Front-end Design:

•Pursuing new solutions to several critical issues (timewalk, c
threshold dispersion, and leakage current tolerance).

•Pursuing Honeywell front-end designs

Readout Architecture:
•Pursuing new, very low deadtime design, capable of implem

metal or 3-metal processes but optimized for Honeywell

System Integration:
•Designing simple serial command decoder, digital bias contr

serializer, and low-voltage differential drivers to build comple

Honeywell Characterization:
•Performance of Honeywell Bulk and SOI processes are poor

doses (> 10 MRad).  Collaborating with Honeywell, using th

Expect involvement at level of ≈ 3-4 FTE of en
throughout design phase
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Pixel Electronics Milestones
Mar 1996: Choose Analog vs Binary readout (choice is binary)

Dec 1996: Terminate design efforts on “parallel prototyping” phas

Apr 1998:  Complete rad-soft demonstrator phase

Dec 1998:  Complete rad-hard demonstrator phase

Aug 1999: Select rad-hard vendor (s)

Sep 1999: Begin pre-production run

Mar 2000:  Release full electronics production

Dec 2001:  Complete full electronics production and wafer testing
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Pixel Electronics Schedule

ID Task Name
1 Pixel Electronics

2 Design/Engineering

3 Prototype design

4 Production design

5 Production oversight

6 Test design

7 Travel

8

9 Development and Prototypes

10 Rad-soft prototypes

11 Rad-hard prototypes

12 Test Equipment/Hardware/Software

13

14 Production

15 Preproduction order

16 Final Production Order

17 Testing

1997 1998 1999 200

US ATLAS Pixel Electronics Summary Sche
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Status of US Effort
Prototyping Activities:

•Fabricated 12 column by 64 row array of 50µ x 536µ pixels. I
polarity inputs,  analog readout, and a complete functional p
capable peripheral logic, in the HP 0.8µ 3-metal process. Ch
with two minor layout errors.
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•Arrays were bump-bonded by Rockwell/Boeing, using 25µ In
bricked n-pixel on p-bulk detectors fabricated at LBL. Assem
LBL in Mar. 97.

•Arrays with/without detectors were characterized using comp
readout system to study threshold, charge measurement, a

→ Threshold uniformity < 200e (without) and < 400-500e (with) detectors

→ Timing uniformity < 1 ns, but timewalk significantly worse with detector
acceptable for 50 ns, but not for 25 ns)

→ Charge measurement uniformity was relatively poor ( ≈ factor 2 variatio
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H8 Test Beam Setup
Chip/detector assemblies in ATLAS test beam

Test Beam setup in H8:
•Four pairs of 50µ strips in x-y planes with slow analog read-o

1-2µ point resolution

•Small silicon diode (5x5 mm) in trigger to select tracks in pix

•Superconducting dipole providing 1.5T vertical field

•Support stages  with rotation/translation for Bonn/CPPM and
were operated simultaneously with common 40 MHz clock.
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Preliminary Test Beam Results
Chips operated with threshold of ≈ 4Ke, and w
clean, with typically no extra pixels hit:

column

ro
w

event display, V = 50, B = θ = 0, Φ = 30
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Due to charge measurement non-uniformities
pixel corrections, then plot charge distribution
are for ≈ 250µ depletion (50V) and ≈ 100µ (10V

charge in electrons

cluster charge distribution, 50 V, B = Φ = θ = 0

charge

cluster charge distribution,
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Using preliminary strip and pixel plane alignm
matching efficiency > 95%, good correlations
resolutions roughly as expected (depletion ≈ 
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Progress on Demonstrator FE-B Chip 
Front-end Design:

•Have submitted three generations of prototypes for next-gen
design, including 3 MOSIS and one Honeywell submission. 

•Now have essentially final design, and most recent submissi
characterization and final validation before making wafer-sc

Readout Architecture:
•Have submitted complete prototype of basic building block (c

End-of-Column logic with concurrent input and output suppo

•Remaining design issues will be addressed, prototype chip w
possible optimizations or improvements.

System Integration:
Design started on additional functional blocks, but schedule does
prototyping (they are simple, but...)

Major issue will be integrating and verifying the complete chip: ex
1M transistor mark - a first for HEP ?
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Prototype of new LBL Pixel Front-end 
May 7 submission of next-generation front-en

•Includes 2 column pairs (18 pixels per column) with real geom
control logic (Select, Mask, Calibrate, and Tune circuits), an

•Contains realistic biassing and vertical power bussing. Pixel 
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Prototype of new LBL Digital Archite
May 7 submission of column-pair prototype fo
architecture:

•Transmits 7-bit Grey-code timestamp to each pixel, where le
timing is latched

•Data is asynchronously drained from pixels to periphery as s

•End-of-Column logic block contains 20 buffers, capable of st
16 different events. Trigger accept/reject operations all perfo

•Present size: pixel back-end is 120µ, and EOC buffer block i
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Basis of Estimate for US ATLAS Pixel El
WBS 1.1.3.1 Design:
WBS 1.1.3.1.1 Prototype Design (design for ATLAS1 and ATLAS2

•Design effort including senior and junior engineers, correspo
during the two years when this activity peaks, making use o
and 3 junior engineers at LBL. A 25% contingency was assu
months delay)

WBS 1.1.3.1.2 Production Design (design for pre-production follow

•Most of the design is performed in the earlier phase. This pha
for the nine month period when this activity peaks. A 30% co
assumed (equivalent to a 3 month delay).

WBS 1.1.3.1.3 Production Oversight

•Estimated engineering required to “supervise” production, eq
over 2 year production cycle.

WBS 1.1.3.1.4 Testing Design

•Estimated engineering for test board design and test proced
This is equivalent to  ≈ 1/3 FTE over the 3 year design perio
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WBS 1.1.3.2 Chip procurement and test board
WBS 1.1.3.2.1 Rad-soft prototypes

•This covers the “partial prototype” chips (front-ends only, dig
the original 12x64 array, plus the ATLAS1 array. It also inclu
submissions for the complete 12x64 array, and the wafer-sc
ATLAS1.

WBS 1.1.3.2.2 Rad-hard prototypes

•This includes a single multi-project submission we made to H
US share of the common procurement for the ATLAS1 and 
wafer-scale runs.

WBS 1.1.3.2.3 Test equipment

•This includes test cards, wafer probe cards, and miscellaneo
software
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WBS 1.1.3.3 Production:
WBS 1.1.3.3.1 Pre-production order

•This covers the US share of the common procurement cost f
order  of 20 wafers from a single vendor.

WBS 1.1.3.3.2 Production order

•This covers the US share of the common procurement of the
share fixed to be 275 6” wafers). The wafer count assumes r
leverages, a ≈ 30% yield, and a 30% assembly loss.The cos
TEMIC/DMILL quote for a 1000 wafer production run in 1999
estimated to be 35%, using a Honeywell quote, and adding 
assembly losses.

WBS 1.1.3.3.3 Testing

•We assume that the US wafers will be tested at LBL on an e
and estimate a probing rate of ≈ 2 wafers/day based on rece
SVX chips at LBL. This item includes equipment and labor.
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P

Summary
US ATLAS Pixel Electronics is making signific
First results from pixel arrays in test beam:

•Operation at 40 MHz, satisfying many ATLAS requirements, h
demonstrated.

•Many goals of the initial LHC “proof-of-principle” prototype pro
achieved

Significant submissions in next-generation de
•Realistic front-end prototype and new readout architecture pr

•Good indications that complete array submission can occur in
providing the first realistic ATLAS prototype chips

Design well-enough defined to provide first rel
schedule information - should be able to write
1998.
US Role is well-defined and very significant - o
and design contributions outweigh our constr
responsibilities.
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